Integrating remote sensing and citizen science to study the environmental context and ecological consequences of returning avian predators

Benjamin Zuckerberg^{1,} Jennifer D. McCabe¹, He Yin¹, Jen Cruz¹, Anna Pidgeon¹, David Bonter², Volker Radeloff¹

¹Department of Forest and Wildlife Ecology, University of Wisconsin-Madison

²Cornell Lab of Ornithology

Animal predators in an urban World

Is colonization driven by urban features?

Is colonization driven by prey availability?

Citizen science and urban ecology

Citizen science: Project FeederWatch

Occupancy Dynamics – (1996-2016)

$$n = 554$$

Landsat

- % imperviousness
- % tree canopy cover

Occupancy Dynamics – (1996-2016)

$$n = 554$$

Landsat

- % imperviousness
- % tree canopy cover

3km buffer around sites (Chiang et al. 2012)

Prey availability

Occupancy Dynamics – (1996-2016)

Dynamic Occupancy Model

Occupancy Dynamics - (1996-2016)

Dynamic Occupancy Model

Detection Process

i = site; k = year; j = repeat survey (week)

Detection process:

 $Logit(p_{i,j,k}) = \overline{\tau_{effort[i,j,k]}}$

Occupancy Dynamics - (1996-2016)

Dynamic Occupancy Model

Detection Process

i = site; k = year; j = repeat survey (week)

Detection process:

$$Logit(p_{i,j,k}) = \tau_{effort[i,j,k]} + \tau_1 * tmin_{i,j,k}$$

Occupancy Dynamics - (1996-2016)

Dynamic Occupancy Model

Detection Process

Ecological process:

 $\begin{aligned} & \operatorname{Logit}(\phi_k) = \beta_0 + \beta_1 * treeCov_i + \beta_2 * ImpSur_i + \beta_3 * preyAbund_{i,k} \\ & \operatorname{Logit}(\gamma_k) = \alpha_0 + \alpha_1 * treeCov_i + \alpha_2 * ImpSur_i + +\alpha_3 * preyAbund_{i,k_{1,i}} \end{aligned}$

Occupancy Dynamics

Occupancy Dynamics – predictions

Occupancy Dynamics - colonization

Occupancy Dynamics - colonization

Occupancy Dynamics - persistence

Occupancy Dynamics

Conclusions

Urban landscapes of fear – predation risk

Citizen science meets behavioral ecology

Develop an approach for assessing antipredator behavior in birds that can be mass-deployed to citizen scientists

Antipredator behavior

Playback experiment - "Hawk-Kits"

Predator stimulus

Antipredator behavior

Playback experiment - "Hawk-Kits"

Predator stimulus

Antipredator behavior

Playback experiment - "Hawk-Kits"

Predator stimulus

Behavioral observations

Behavioral observations

Observation periods

Tally records

Counts of species

Behavioral observations

Head up and pecking

Analysis

Flock Size

Flock Size

Flock Size

Vigilance

Vigilance

Foraging

Foraging

Conclusions

Implications

Acknowledgments

This research would not be possible without the hard work of thousands of volunteer FeederWatch participants (not passive sensors)

Kelsey Demeny Emma Greig Macaulay Library

